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Signatures of classical diffusion in quantum fluctuations of two-dimensional chaotic systems
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We consider a two-dimensioné2D) generalization of the standard kicked rotor and show that it is an
excellent model for the study of universal features of 2D quantum systems with underlying diffusive classical
dynamics. First we analyze the distribution of wave-function intensities and compare them with the predictions
derived in the framework of diffusivdisorderedsamples. Next, we turn the closed system into an open one by
constructing a scattering matrix. The distribution of the resonance wilfilsand Wigner delay time®(r)
are investigated. The forms of these distributions are obtained for different symmetry classes and the traces of
classical diffusive dynamics are identified. Our theoretical arguments are supported by extensive numerical

calculations.
DOI: 10.1103/PhysReVvE.68.066215 PACS nunder05.45.Mt, 73.23-b
I. INTRODUCTION base but the problem is still not solved complety.

Since the pioneering work of Andersfl] it is known

Random matrix theoryRMT) was invented more than 50 that the diffusion indisorderedsystems can be affected very
years ago by Wigner in order to describe the statistical propstrongly by quantum localization. If the system size exceeds
erties of complex nucleil]. In recent years the fast devel- the localization length, then the diffusion is completely sup-
Opments in mesoscopic physics and quantum Chaos hﬁessed after the time need.ed TOI’ the wave paCket tO_ Spread
given a new boost to the RMT approamlg]_ The Strength over the scale of the localization Iength But even in the
of RMT consists in the universality of its predictions con- absence of strong localization the existencepmflocalized
taining no energy or length scales or any parameter depergtates[12—20Q influences the behavior of different physical
dence. At the same time this is its weakness, because it doggantities in the diffusive regime. Having this in mind, it is
not allow us to take into account various phenomena appealegitimate to ask, what happens with deterministiw@otic
ing in mesoscopic systems which introduce new lengttSystems when quantum-mechanical description becomes rel-
scales or parameters in the system. evant? Our analysis shows that prelocalized states are present

The break down ofiniversalityand the traces of the un- @lso in the case of dynamical systems and affect various
derlying classical dynamics are important topics in quantun$tatistical quantities such as resonances and Wigner delay
chaos studies and have major applications in mesoscopfmes. For the analysis of the latter quantities, we turned the
physics. It is therefore highly important to compare the re-closed KR to a scattering system by imposing “absorption”
sults from RMT models to the results from systems that havé0 & set of momentum states. The resulting scattering matrix
a semiclassical limit, and to look for circumstances wherdS Written in terms of the unitary evolution operator of the
semiclassical tools rather than RMT become relevant. In thi§orresponding closed system and a projection operator. A
paper we extend our previous studi¢d,5] on two- detailed description of this construction is presented.
dimensional chaotic systems with underlying classical diffu- The paper is structured in the following way. In Sec. Il the
sion pay|ng attention to app”cations of our results for ran-CIaSS|CaI mOdel IS |ntr0duced a.nd the main def|n|t|0ns are
dom |asers and microwave absorption_ We |dent|fy th&iven. Sections I and IV are deVOted to the Corresponding
signatures of classical diffusion in quantum fluctuations byduantum-mechanical system. The quantization on a torus is
analyzing the distribution of wave-function intensities of Presented in Sec. lll, while in Sec. IV we present a detailed
closed systems, and the resonance widths and Wigner de|§9n§truction of the scattering matrix. Sections V and VI are
times of their Corresponding Scattering ana'ogs_ ed|Cated to the analyS|S Of various StatIStlcal propertles Of

Our ana|ysis is based on a tWO_dimensiofﬁD) gener- the closed and the open 2D KR model correspondingly. Fi-
alization of the well-known kicked rotofKkR) model . For ~ hally, our conclusions are summarized in Sec. VII.
large values of the kicking strength the model is classically
chaotic and_the dynamics is diffusive. The detailed analysis Il. THE CLASSICAL 2D KICKED ROTOR
of the classical system allows us to extract the relevant pa-
rameters that penetrate into the quantum-mechanical descrip- A prominent example of a system with classical diffusion
tion. The quantum analog showdynamical localization s, the well known in the field of quantum chaos, the KR
[6—9] with eigenstates which are exponentially localized in amodel [6], which consists of the free propagating rotor
similar fashion as the eigenstates of disordered systemsdriven periodically in time by an external force. Since the
However here the localization occurs due to complicated intotal energy of a driven system is not a constant of motion
terference effects created by the underlying classical chaotiany more, the chaotic behavior can appear even in the 1D
dynamics. Attempts were made to put this analogy betweenase.
the kicked rotor and disordered systefi’s10] on a solid Although many results are known for the standard 1D KR
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FIG. 1. Poincaresection of the classical phase space for Hamiltorilarfor (a) k=0.36, (b) k=6.37.

there is almost no study for its two-dimensional generaliza-  £,(n+1)=L,(n)—k{—cog 6;(n+1)]sin ,(n+1)]
tion, besides Ref.8] where the authors have focused on the _

analysis of dynamical evolution. The corresponding model is X coga)—sinN26;(n+1)]

described by the following Hamiltonian: Xsi26,(n+1)]sin(a)}, 3

_ ] _ whereg;(n) and £;(n) are the values of the dynamical vari-
H H°+kv({6'})§ o(t—mT), @ ables taken just after theth kick. The motion generated by
this set of maps is integrable in the absence of the kicking
2 potential. For sufficiently small but nonzeio the phase
Ho({LiH) =2, = (Li+ )2 space of this system contains both regular islands and chaotic
=12 sea[see Fig. 18)]. Whenk is large enough then the dynamics
becomes fully chaotifsee Fig. 1b)] and there is diffusion in
where the index=1 (2) is related to the firstsecond rotor  momentum spacéFig. 2 with diffusion coefficient
correspondingly.; denotes the angular momentum afd
the conjugate angle of one rotor. The kick period,i& is the C{(LA)) K2
kicking strength, whiler is a constant inversely proportional D= lim t 2T (4)
to the moment of inertia of the rotor. The paramejgs an i

irrational number whose meaning will be explained below.—l—he last expression is correct within the random-phase ap-
The Hamiltonian(1) describes a system which is kicked pe- proximation[6,8,21 (see Appendix &

riodically in time. Another representation of the Hamiltonian ™ 114 corresponding open system is described by the same
(1) may be given by one rotor moving on a two-dimensionalge of equationg3) as the closed one, on top of which we

sphere_. The two rotors are interacting with each other by the 4 absorbing boundary conditions, namely, wessetqual
potential to zero, if £;<0 or £;>L. These conditions give to “the
particles” the possibility to escape from the system. The evo-
V({6i})=[cod 6;)cog 6,)cog ) lution of the classical densitg(x,y,t) is described by the
+1sin(260,)cog28,)sin(@)]. (2)  Frobenius-Perron equation, which takes in our case the form
of the following diffusion equation:

The parametew breaks time-reversal symmet(yRS). The

form (2) was chosen so as to minimize the effect of symme- 1210'f ' ' '
try breaking on the classical diffusion constdht(see be- " 1041
low). T
The classical equations of motion which correspond to the SF
Hamiltonian (1) can be integrated over the kick peridd  ,®°"°[
giving a set of simple maps: e i
.v]e,oxmz‘_—
61(n+1)=64(n)+ 7, TLy(n) mod 2, ! ]
4.0x107 | —
0,(n+1)=0,(n)+7,TLy(N) mod 2, S ]
2.0x107 - =
Liy(n+1)=Ly(n)—k{—siM H;(n+1)] b
% cog 6,(n+1)]cod @)+ cog 26,(n+1)] ’ ” " e 2°°
X c0g26,(n+1)]sin(a)}, FIG. 2. Diffusion in momentum space fér=9.1.
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10° 3 operator into the product of the evolution operators corre-
1 sponding to the free propagation and the interaction. Due to
this fact the kicked systems are very convenient for numeri-
cal study.

If the £; are taken mod(Zm;/T7;) wherem; are inte-
gers, Eq.(1) defines a dynamical system on a torus. The
quantum mechanics of this system is described by a finite-
dimensional time evolution operator for one period:

P(t)

U=exd —iHo({LiH)T/2]exd —iV({6i})]
xexf —iHo({ L) T/2], ©)

where we puti=1. In the above representatiod, is sym-
10° o 200 00 250 metric and describes the evolution in the middle of the rota-
t tions between two successive kicks. Upon quantization, ad-

ditional symmetries associated with the discreteness of the

momentum show up, which can be destroyed by introducing

irrational values for the parametefs’s. The most striking

gp D consequence of quantization is the suppression of classical

—=—Ap (5) diffusion in momentum space due to quantum dynamical lo-
t 4 calization [6,7]. We introduce the eigenstate components

W, (n) of the Floquet operator in the momentum representa-

tion by

FIG. 3. Exponential decay of the classical survival probability
for open kicked rotor model.

with absorbing boundary condition

Ju=— 7 (Fp)p= -, © S UnaWi(m) =T, (n) 10

which sets the flux at the boundaﬁy, to be equal to the . ) ) )
number of particlesb,, carried out under one iteration of the 'N€ guantitieso, are known as quasienergies, and their den-

map. The solution of Eqg5) and (6) can be represented as SiY IS p=T/2m. The corresponding mean quasienergy spac-

the superposition of the diffusive eigenmodggx,y): ing is A=1/(pL¢), whereL is the linear size of the system
andd is the dimensionalityd=2 in our casg The Heisen-
* berg time isty,=2/A while tp=L?/D is the diffusion time

p(x,y,t>=k21 ce Mo (x,y), (7)  (Thouless timg Now one can formally define a dimension-

less conductance as

wherey, are the corresponding eigenvalues apére coef-
ficients determined by the initial condition. The asymptotic
behavior of the density is governed by the smallest eige
value y;=I"y. As a consequence one has an exponenti
decay of the classical survival probabilityP(t)

g=ty/tp=D,L972 (11

whereD,=TD is the diffusion coefficient measured in num-
er of kicks. Four length scales are important here: the wave-
length \, the mean free path,,, the linear extent of the

=J[dxdy p(x,y,t): systemL, and the localization lengtl. In the rest of this
P(t)ce Tef, (8) paper we will always assume that
The classical decay rafé,~D/L? can be estimated as the A<Iy<L<¢. (12

inverse time needed for the particle to reach the boundar¥ i . .
(Thouless timg The exact value of the classical decay rate he first condition ensures that transport between scattering

can be obtained as the solution of the corresponding eigerfVeNts may be treated semiclassically. This limit can be
value problem or from the numerical calculationfft). In  achieved for our sy_sterﬁl) whenk—ce, T—0 while the
Fig. 3 we present the results of our numerical calculations fof!2ssical parametét=KkT remains constant. Whegy <L as

P(t) for some representative parameters. long as the motion is not localizéde., L<¢) it is diffusive,
since a particle scatters many times before it can traverse the

system. The resulting mean free path for our systéjmis
Iw= /Dy (see Appendix Awhile the localization length for
Because of the periodicity of the external force a time-d=1 is £&=D,/2 [6] and ford=2 is £&=1,,eP«? [8,23).
dependent solution of the KR model can be represented as a A great advantage of the kicked rotor consists in the fact
superposition of Floquet stat¢22]. These are the eigen- that due to the unitarity of the evolution operator all its
states of the evolution operator for one perigdoquet op- eigenstates have the same statistical properties. This is in
erato). For kicked systems the interaction with external contrast to the eigenstates of Hamiltonian modslsch as
force is instantaneous and one can factorize the total Floquétnderson modeg| where the eigenstates belonging to differ-

Ill. QUANTIZATION ON A TORUS
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ent parts of the spectrum have different statistical propertie3he scattering matris; given by Eq.(18) can be interpreted
and therefore they must be picked up from a narrow energin the following way: once a wave enters the sample, it un-
window. This allow us to collect a huge set of numerical datadergoes multiple scattering induced hyl —e'“PU] ™!

and perform a rather accurate numerical analysis. The results>"_ (e'®PU)" until it is transmitted out. It is clear there-

of our investigation will be discussed in Sec. V.

IV. THE SCATTERING APPROACH

fore that the matrixJ =PU propagates the wave inside the
sample. However, contrary to the closed system in which the
evolution operator is unitary, the absorption breaks the uni-

To proceed with the analysis of the resonance widths anéfrity of the evolution matrixJ.

delay times we turn the closed 2D KR mod®) into an

open one. To this end we impose “absorption” at the bound-w,=

The eigenvalues dfl occurring at complex quasienergies
w,— (1/12)T, are the poles of the scattering matrix. They

ary of a square sample of sizex L in the momentum space represent long-lived intermediate states to which bound
in complete analogy with the classical setup. In other wordsstates of a closed system are converted due to coupling to
every time that one of the components of the two-continua. Herew, and ', are the(dimensionlessposition

dimensional momentum{; ,£,) takes on the value 1 dt,

and width of the resonances, respectively.

the particle leaves the sample. The corresponding unitary Having at our disposal the scattering matfxwe can

scattering matrixS (see Appendix Cis given[24] by

wt, (13

1
S(w)=+I—-WW -WU—
@) e '"—{I-W'wu

wherel is theL2x L2 unit matrix andwW is anM X L2 matrix
with matrix elements

Wi, |:J

0, i#] 19

Wi,j(kvA):

with w?e[0,1] the tunnel probability in mode In the case
of perfect coupling, which is considered hevg=1. Then
WW'=1,y andW'W is anL?x L? diagonal matrix with

M nonzero elements equal to one. From the physical point of

view, W describes at which “site” of thd. XL sample we
attachM “leads” [in our caseM =4(L—1)]. HereW'Wis a
projection operator onto the boundary, white=| — W'W is
the complementary projection operator which satisfies

I —Ww=1-w'w. (15)

Taking this into account, the expressitiB8) can be simpli-
fied:

1
U—
e l—(I-w'wyu

1
=Wu . w'
U-e *—W'wu

(16)

and using the unitarity of the evolution operatdrwe can
rewrite the last expression as follows:

1
S=W — W', (17)
I-W'w—-UTe i

The scattering matrix17) can equivalently be written in the

form used conventionally in quantum chaotic scattering:

. 1
Sw)=—-WUd® —F—W".

- 18
|—e'“PU (18

calculate the Wigner-Smith delay time. It captures the time-
dependent aspects of quantum scattering and formally it is
defined as

d
Tw(w)=—i %In detS(w)

(19
and can be interpreted as the typical time an almost mono-
chromatic wave packet remains in the interaction region.

A generalization of the notion of Wigner delay time is
given through the Wigner-Smith operator. The latter is de-
fined as(for the kicked rotor model one should use quasien-
ergy instead of energy in the definition of Wigner-Smith op-
erato)

1,98 o0
i e (20
Introducing a new operator
K= ! (21
S I-witw-ute @

and taking the derivative of both sides of Ef7) we obtain

JS _WaK W
do  dw
=W ! —(—i)e ey’
|—W'w-UTe i@
X ! — W
| -W'w—UTe i
=—je "*WKU'KW'. (22
Then the definition of the Wigner-Smith yields
Q=—ie "WK'W'WKU'KWT". (23

The Wigner delay time can be expressed as the sum of
proper delay times . The latter are the eigenvalues of the
Wigner-Smith operato(23).
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0.012~

In the following section we calculate the distribution

function P(y=_L%W.(n)|?) by using a direct diagonaliza-
tion of the Floguet operatd®). The TRS is broken entirely
0008 for «=5.749, i.e., the phase difference for a typical trajectory

and its time-reversal counterpart is larger than o that all
interference effects between time-reversal trajectories are
suppressed. In order to test the issue of dynamical correla-
tions, we randomize the phases of the kinetic term of the
evolution operatof9) and calculate the resultirig(y). This
0.8 I AR () . model will be referred to as random-phase KRPKR).
g ' Since all our eigenfunctions have the same statistical prop-
erties (in contrast to the Anderson cases where one should
pick up only eigenfunctions having eigenenergies within a
small energy intervdl27—29) we make use of all of them in
FIG. 4. An example of anomalously localized state. The size ofPUr statistical analysis. The classical paraméter6.36 is

the system id X L =90x 90, the diffusion coefficienD =33.8. Iarge__en_ough 'r? all cases to exclude the existence of any
stability islands in phase space, the accelerator modes known

for KR [21,39 are avoided as well. The influence of the

accelerator modes on the eigenfunction statistics is an inter-
The statistical properties of wave-function intensities haveesting problem, which is out of the scope of the present study

sparked a great deal of research activity in recent yearge}nd deserves a separate investigation. The classical diffusion

These studies are not only relevant for mesoscopic physicgoefficientD is calculated numerically by iterating the clas-

[12—20,25-30 but also for understanding phenomena in ar-sical map obtained from Eq1). Below we present our nu-

eas of physics, ranging from nucld&1] and atomid32,33  merical results and compare them to the predictions of Refs.

to microwave physic§34—37 and optics[38]. Experimen-  [13-20,23.

tally, using microwave cavity techniques it is possible to

probe the microscopic structure of electromagnetic wave am- A. Numerical results

plitudes in chaotic or disordered cavitig®4—37. Recently,

the interest in this problem was renewed when new effective- . . ) .

field theoretical techniques were developed for the study o?'me whereg—ce. In this case, RMT is applicable and one

the distribution of eigenfunction intensitié®(|4|?) of ran- inds 3]

dom Hamiltonians. As the disorder increases, these results RMT _ _ -y

predict that the eigenfunctions become increasingly nonuni- Ple=n(Y) =exp(=yl2)/N2my, @49

form, leading to an enhanced probability of finding anoma-

lously large eigenfunction intensities in comparison with the

random matrix theory prediction. Thus, the notionpoélo-

calized states, i.e., states which are localized much morédere B denotes the corresponding Dyson ensemige:

0.006 -

0.002

V. DISTRIBUTION OF EIGENFUNCTION INTENSITIES

Let us start our numerical analysis from the ballistic re-

Plan(Y) =exp(—y). (25)

strongly than typical eigenstates, has been introdydé@d  =1(2) for preservedbroken TRS. This result can be easily
17] to explain the appearance of long tails in the distributionsunderstood. Indeed, within the random matrix theory one
of the conductance and other physical observallas assumes that all the eigenvector components are independent

Up to now all theoretical predictiond2—20,25,3Dand  (the normalization of the eigenvector is not essential in the
numerical calculation§27—-29 apply to disordered systems thermodynamic limit, i.e., when the number of its compo-
and are based on an ensemble averaging over disorder reaknts becomes very largemndom variables obeying Gauss-
izations. Their validity, however, for a quantudynamical ian distribution. Going to the distribution of the modulus
system(with a well-defined classical limitthat behaves dif- square of the components one immediately recovers Eq.
fusively is not evident. Here we show that prelocalized state$24). For the case of the broken time-reversal symmetry one
exist also for dynamical systems with underlying classicalshould take into account that each component has statisti-
diffusion and investigate the effect of these stateB(hy|?). cally independent real and imaginary parts, leading to the
An example of them is reported in Fig. 4. Our main conclu-distribution given by Eq(25). The numerical data presented
sion is that in a generic dynamical system with classical difin Fig. 5 show that the distributions of the eigenfunction
fusion, P(|]?) is described quite well by the nonlinear  intensities in the ballistic regime for the two-dimensional
model (NLSM). We point out that between the various the- kicked rotor are described very nicely by the RMT predic-
oretical works there is a considerable disagreement about th®n.
parameters that control the shapeRgfy|?) and their depen- As the ratio between the system size and the localization
dence on TRS. More specifically, the NLSM suggests thatength increases, the deviations from the RMT results of the
the tail of P(|4/]?) in two dimensions is sensitive to TRS body and the tails of the distributioRs(y) become notice-
[16-19,25, while a direct optimal fluctuatiofDOF) method  able and can be parametrized by a single parameter which is
predicts a symmetry independent reg@d]. This prediction the dimensionless conductange-D,. Fory<D,, accord-
was an additional motivation for the present study. ing to all studie§14-18 P(y) is just the RMT result with
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FIG. 5. Distributions of the eigenfunction intensities in the bal-
listic regime for two-dimensional kicked rotdsolid lineg com-
pared with the RMT prediction&ashed lines

polynomial corrections in powers of/Dy, i.e., Ps(y)
(Y)[1+6P4(y)]. The leading term of this expan-

— pRMT
=P

sion is given by

3/4—3y/2+y?l4 for B=1
“Ml1—2y+y22

oPs(Y)

where k is the 2D diffusion propagataitime-integrated re-
turn probability, which is identical for8=1 and =2 since

it is a classical quantity.

Figures §a) and &b) show corrections t5"" for g
=D,>1 for two representative values bf,. We find again

PHYSICAL REVIEW B8, 066215 (2003

that the form of the deviations are very well described by Eq.
(26) and the agreement becomes better for larger values of
the diffusion constant. This is due to the fact that by increas-
ing D, we are approaching the semiclassical region and
therefore Eqs(12) are better satisfied. At the same time
higher-order corrections i@P4(y) become negligible with
respect to the leading term given by E@6).

In Fig. 6(c) we summarize our results for variols, val-
ues. The extracted; values are obtained by the best fit of
the data to Eq(26). Again we find thatk; depends linearly
on 1D,. However,x; and k, are different. Moreover the
best fit with k ;= AzD, '+ B yields Ag_,=5.44+0.03 and
Ap-,=10.84-0.04 indicating that the ratiR=A,/A; is
close to 2, a value that could be explained on the basis of
ballistic effects[19,25,27,29 Taking the latter into account
leads to an additional term in the classical propagaigr
= kqifi T (BI2) kpay - The first term is the one discussed pre-
viously and is associated with long trajectories which are of
diffusive nature while the latter one is associated with short
ballistic trajectories which are self-tracind9,25. Thus,
when kgirs<<kpa We getR=2. The calculation with the
RPKR model shows, however, that the corresponding ratio is
R=1 in agreement with the theoretical prediction for disor-
dered systems with a pure diffusion. This indicates that dy-
namical correlations can be important.

For the tails of the distributions, the result of the NLSM
within a saddle-point approximatidi6,17,19,2%is

’p D
Py =exii~Ciny)?), Ci=22L 2 @

Note that the decay in the tails of ER7) depends org.
Recently, a DOF method was used to calculate the tails of
Ps(y) [20] for the white-noise random potential. It was

0-4 | I
0.3
0.2

XL T T

g3
20, o
=0,

0.1

aP(y)

0.0
-0.1

FIG. 6. Corrections to the distribution inten-
sities 5Pg(y) for the two-dimensional kicked ro-

0.2 ' '

iy
o
N
iy
o|
-
(=]
=}

tator model(9). The system size i& =90, (O)
10 B=1, (¢) B=2. The solid(dashedl lines are the
best fit of Eq.(26) for =1(2) to the numerical

0.1

0.0 '

data: () D~34 and(b) D,~583; (c) fit param-
eterswkg vs D, !. The solid(dashedlines are the
best fits tok g=AzD, '+ B for f=1(2).
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InP(y)

FIG. 7. (a) Tails of the distributionPg_;(y
>D,) for the model(9) andD,=35. The system
size isL=280, (O) B=1, (¢) B=2. The solid
(dashedl lines are the best fit of Eq27) for
. B=1(2) to the numerical data(b) Fitted log-

20 T I T P

- b ) normal coefficientsC, vs the classical diffusion
; (b) coefficientD,.. The solid(dashedl lines are the

C, (RPKR) — best fits toCz=AzDy+ B for B=1(2).

C, (RPKR) _

1

15 - &=

900
(el

1.0 7

1 I 1 I 1
0 520 40 60 80

found that the tails are still given by E@§27) but with a  fusive system. This study is important for various applica-
log-normal coefficienC which is independent of the param- tions among which are diffusive random lasers and micro-

eter B: wave cavities [40—44 where most of the theoretical
treatment is limited by RMT. We point out here that current
CPOF= 72, D _ (28) developments of microwave experiments in random dielec-

In(L/N\) tric media in the diffusive regimp45] may allow us a direct

comparison between theory and experiment.

Figure fa) shows a representative case B%-1(y Specifically, we have found that the resonance width dis-
>Dy). The tails show a log-normal behavior predicted by ihytion P(I') is given by

Eqg. (27). In Fig. 7(b) we report the log-normal coefficients

Cp extracted from the best fit to our numerical data versus ~ P(I'<I';))~exg — Cg(In I')?], where Csz~pBD,
the classical diffusion coefficient. A pronounced linear be-
havior is observed in agreement with both theories. However D 1
one clearly sees that; differs from C, in contrast to the P(I'=T¢)~ \/>
DOF prediction(28) and to recent numerical calculations
QOne for the 2D Anderson modgd7]. We point out here that while the distribution of the Wigner delay times is given by
in Ref.[27] the authors were not able to go to large enough[he following expressions:

values of conductanog (in comparison to our studywhere '
the theory can really be tested. In contrast, the NLSM pre- 1

dicts a value of 2 for the rati®&=C3/C7. We note thaCy P( Tsl“c‘,l)~72exp(—alr),

is only the leading term irD,. In order to calculate this T

ratio, we performed a fit to our data with;=AgD+Bg. . 5

The resulting ratio was found to lR=A,/A;=1.97+0.03 P(r>T¢")~exd — Cp(In7)7], (30

in perfect agreement with the NLSM predictions. Finally in here D is the classical diffusi q h

Fig. 7(b) we also present our results for the RPKR modelWhe€re D is the classical diffusion constang denotes the
[using the same data as the one in Fig)F Again we found symmetry clas_s, and is some constant of order unity. '
that the raticR=1.96+0.03~2. ThusP(y>D,) depends on Our t_heoretlcal considerations are supported by numerical
TRS and is described by the NLSM. The fact that the pre_calculatlons for the open analog of the 2D KR model de-

diction of a DOF method is not observed in our calculationsScriPed in Secs. Il and IV. The parameters of the model were

might be due to nonuniversédepending on the type of dis- cNosen in such a way that the conditiofi®) discussed in
orded character of this result. the preceding section were fulfilled. In order to improve our

statistics, we randomized the phases of the kinetic term of
the evolution operatof9) and used a number of different
realizations. The results of the preceding section allow us to
conclude that this procedure does not change the universal

In this section we analyze the statistical properties offeatures of the model. In all cases we had at least 60 000 data
resonance®(I') and Wigner delay time®(7) for a 2D dif-  for statistical processing.

VI. OPEN SYSTEMS: DISTRIBUTION OF RESONANCES
AND DELAY TIMES
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, e 5
A. Resonance widths distribution 10 _’? ﬁl 8 : I :

For diffusive mesoscopic samples, there is no systematic
investigation of P(I') besides Ref[46] where the authors 10"
have focused on the large tailsB{I") for a quasi-1D system _
in the diffusive regime. This deficiency is felt especially [S 107 -
strong in the random-laser community where one wants to &
know the statistical properties of the lasing threshold.

Usually we model random laser as a disordered or chaotic 107" B
system containing a dye that is able to amplify the radiation 9 . | . | . (@)
with a rate, in a certain frequency interval. In contrast to 10 20 o5 30

the traditional lasers where the necessary feedback is due to
mirrors at the boundaries of the laser cavity, the key mecha-

nism for random lasers is the multiple-scattering inside the

medium[40]. The lasing threshold is given by the value of 20+ —
the smallest decay ratee., smallest resonance widltof all

eigenmodes in the amplification winddw7,48. The under-

lying reasoning is that in the mode with the smallest decay (5™ 1.5 _
rate the photons are created faster by amplification than they

I
can leavedecay the sample. 1.0 —
Assuming that the number of mod&s>1 that lie in the
frequency window where the amplification is possible have 05 )

[ [
l l (b
resonance widthE that are statistically independent one gets ™20 25 30 35
D

In®(1/T)

for distribution of lasing threshold®(I") [47-49:
K-1 FIG. 8. () The distribution of resonance widtlglotted as

P(I=KP(I'<1) , (81)  P@I)vs 1r] for I'<I'y, for two representative values &f. The
system size in all cases Is=80. Filled symbols correspond to
broken TRS. The solid lines are the best fit of E2P) for B=1(2)

where we have assumed that klfesonances are distributed to the numerical datab) CoefficientsC vs D. The solid lines are

according toP(I'<1). The validity of this approximation the best fits toCz=AzD+B, for B=1(2). Theratio R=A,/A;
was verified recently in the framework of the RM30]. An =1.95+0.03

important outcome of our study will be that one can identify

traces of prelocalized states in the latter distribution and condsing this together with Eq.32) we obtain

sequently inP(I"). This sheds some light on recent experi- 212

mental finding for random lasers which suggests the appear- PL)~ex = a"DIn“(1)]. (34

ance of localized modes in diffusive samp[&d]. We would like to stress that, based on the results of the

We start our analysis with the study of resonance Widtrbreceding section, the expression @) must be corrected

distribution P(I') for ['<I';. The small resonances<A  p incuding the TRS factoB in the exponent. Taking all the
can be associated with the existence of prelocalized states gfye into account we end up with the expression given in

the closed system which were discussed in the precedingq_ (29).

section. They consist of a short-scale butmere most of The numerical data reported in Fig. 8 support the validity
the norm is concentratgdnd they decay rapidly in a power- ¢ the ahove considerations. However, we would like to men-
law fashion from the center of localizati¢80,25. One then  jon that the perturbative argument is valid only for the case
expects that states of this type with localization centers at thgg very small resonances, i.d.<A, whereas our numerical

bulk of the sample are affected very weakly by the openingy,is jndicate that one can extend the log-normal behavior of
of the system at the boundaries. In first-order perturbanorb(r) up to resonances with<T'<T',
ol -

theory, considering the opening as a small perturbation we Neaxt we turn to the analysis @) for T=T,. In Fig.

obtain 9(a) we report our numerical results f@®I") with preserved
(broken TRS for two representative values Bf An inverse
£:<q,|wfw|q,>: 2 [P (n)|2~L|P(L)|2, power lawP(I')~T"~1%is evident in accordance with Eq.
2 ry (29). [The behavior of the extreme lardétails of P(I') is
(32 essentially determined by the coupling to the leads which is
model dependent. Their relative number is proportional to
where|W(L)|? is the wave-function intensity of a prelocal- M/L2~L~! and therefore they are statistically insignificant.
ized state at the boundary. At the same time the distributioffrom the figure it is clear that this part of the distribution is
of 6=1/{LW (L) for large values of the argument is found to independent of the symmetry class, in contrast to the small

I
1—f P(T'<1)dl’
0

n e boundal

be of log-normal typg20]: resonance distribution discussed above.
The following argument provides some understanding of
P(6)~exfd — m°D In?(6?)]. (33)  the behavior ofP(T') for '=T',. First we need to recall that
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10
(@
0
107~
& o
£ oaP o!
o 10-2 - ® e i FIG. 9. (a) The resonance width distribution
i P(I") for preserved TRS an®=20.3 (O) and
| D=33.5(<¢). The corresponding filled symbols
10-4 L ! represent?(I") for broken TRS and the same val-
i | | ues ofD. The dashedsolid) vertical line marks

the classical decay raté'; for D=20.3 O
=33.5). (b) The P,(T") for a sample with nine
leads(lower curve. For comparison we plot also
the P(I") for the same sample but when we
open the system from the boundaries. The dashed
lines correspond to the theoretical predictions
(36) and(37).

the inverse ol represents the quantum lifetime of a particle The above result is valid for any numbler of “leads” such

in the corresponding resonant state escaping into the leadhat the ratioM/L? scales as 12. In Fig. 9b) we report the
Moreover we assume that the particles are uniformly distribintegrated resonance width distributi@t,(I") for the case
uted inside the sample and diffuse until they reach thewith nine “leads” attached somewhere to th® Zample.
boundaries, where they are absorbed. Then we can associateA straightforward generalization of our arguments for 3D
the corresponding lifetimes with the timig~1/T'r~R?D a  systems in the diffusive regime gives
particle needs to reach the boundaries, when starting a dis-

tanceR away. This classical picture can be justified for all T Do 4(T4\%?
states with'=T";;~ D/L?2. The relative number of states that P T'r)~ T~ ZF— + 5(1“_) ,
require a timet<tg in order to reach the boundariger R R
equivalently the number of states with>1'g) is

(38)

which forI'g>T", leads to the same universal expression as
in Eq. (29). Similarly, the analog of Eq37) in 3D is

* S(tr)
Pu(Te)= [ PTIOr~=2, (35) -
|
" P Tr) ~ F—R) : (39
where S(tg) is the area populated by all particles with life-
timest<tg. In the case of open boundaries we get It is interesting to compare the above predicti@g) with
the results of the random matrix theory. In the general case,
L2—(L—2R)?2 Tq Ig Fyodorov and Sommei$2] proved that the distribution of
Pn(I'r)~ 5 V1. 1o (36)  scaled resonance widths=T"/A for the unitary random ma-
L ROOR trix ensemble is given by
ForI'g>T, the first term in the above equation is the domi- (— 1M gV sinh( yr)
nant one and thus Eq29) follows. P(y)= M-1 o —) 40

Here it is interesting to point out that a different way of
opening the system might lead to a different power-law be- _
havior for P(I'). Such a situation can be realized if insteadWhereM is the number of open channels and the paranepter
of opening the system at the boundaries we introduce “onecontrols the degree of coupling with the channes=(L for

site” absorber(or one “lead”) somewhere in the sample. In Perfect coupling Our numerical data from the 2D KR
such a case we have model in the ballistic regime, reported in Fig. 10, are in

excellent agreement with the theoretical predictidf).
St R Dt T In the limit of M>1, which is relevant for the compari-
P Tr)~ (tg) - _“R__d (37)  son with Eq.(29), Eq. (40) reduces to the following expres-
intt * R 2 2 2 Ty’ ; )
L L L R sion[52]:
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2
107

FIG. 10. Distributions of the resonance widths
in the ballistic regime for two-dimensional kicked
rotor (O) compared with the RMT predictions
(dashed lines

ST
&

P(y)
O

O

10 o

#

O%\Q

I

1

I

!

I

I

I Oé\
I N
‘l

10° 10

. the presence of absorption and all of them are either within
5_2 lor < — the regime of applicability of RMT41-44,53 or applied for
P(y)=) 2Ty . m(a+1) ma-1 4y guasi-1D geometr{53,54. Here we will deriveP(R) in the

0 otherwise. diffusive regime in two dimensions and in the weak absorp-

T i tion limit. In this limit it was shown[42,44] that the follow-

One can see two essential distinctions between this result a’i‘ﬁ?g relation between the proper Wigner delay times and re-
Eq. (29). First, the power lawP(I") ~ 1/T'? is not the same as flection coefficients holds:
the power law predicted by Ed29) for large resonances
P(I')~1/I"%2. Since this difference appears in the “classi-
cal” part of the distribution, it can be explained as a differ-
ence in the classical dynamics of a particle inside the system; ; ;
ballistic (RMT) versus diffusive motion. Indeed, taking into VV‘(/T;Z:“SSE égirgigg% oﬁla?{s :lhrgeilsgoerr;\t/;lrlﬁzts thr?Es
account that for ballistic systeR~vt andI';~v/L, where the knowledge ofP(R) reducaes to the calculation of the
v is the velocity of the particle, one immediately finds from distribution of proper Wigner delay timeg(r,) [42].
Eq. (36) that Pi”t(FR).NFC'/FR for £R>FC' , In agreement Below we make the standard assumption that the resulting
with the RMT predictionP(I')~1/I'". Second, according 10 gigpinytion generated over different energies is equivalent
Eq. (41) there is a gap in the distribution of the resonancey i, the one generated over different disorder realizations.
widths: there are no resonances with widths smaller thagy starting point is the well-known relation
M/m(g+1). The existence of the gap can be understood, if

Ry=1—74/ 74, (42

one relates the small resonances to the coupling of the wave L2

functions to the leads. Since the wave functions in the RMT (@)= | 43
o . ) . )= S —

are extended, the probability to find a wave function, which = (w—wn)2+1“ﬁ/4

is weakly coupled to alM channels, goes to zero when the
number of channels becomes very lalge>1. In the diffu-
sive regime, in contrast, there are prelocalized states, whicfhich connects the Wigner delay times and the poles oSthe
are weakly coupled to the leads. Due to their existence th&atrix.
distribution of the small resonance widths has a nontrivial Let us start with the far tails. It is evident that large times
behavior described by E@29). 7(w)~T, ! corresponds to the cases wher-w, and T,
<1. In the neighborhood of these point§w) can be ap-
B. Wigner delay times distribution proximated by a single Lorentziai43). Sampling the
) , i quasienergies with stepA w<TI,;, we calculate the num-
We turn now to the analysis of Wigner delay times andper of points for which the time delay is larger than some
calculate their probability distribution. It can be shown thatg,qq yajuer (see Fig. 11 Assuming that the contribution of
this distribution is related to the distribution of reflection g501, | grentzian is proportional to its width one can estimate
coefficientsR in the present of weak absorption. AbSOIUON i yumber assy -y, I'/AE. For the integrated distribu-
is one of the main ingredients in actual experimental situa-. . oone o .
tions and its theoretical understanding is of great importancé!on of delay times in the limitw—0 we obtain
Unfortunately a comprehensive treatment of absorption is
still lacking. There are only very few reported analytical re- Ur
sults for the distribution of the reflection coefficieR(R) in P"“(T)Nf dI'A(I)HI (44)
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T ingredient(see, for example, Ref52]).
art Sincer= Ei'\lqu, we expect the behavior of the distribu-
tion of proper delay time§>(r,) to be similar toP(7) for
large values of the argumenttor 71 we haver~ 74'®).
yr3 [\ Moreover, from the numerical point of vie®(r;) can be
studied in a better way because a larger set of data can be
generated easily. Our numerical findings B(,) are re-
ported in Fig. 12 and are in nice agreement with E3§),
even for moderate values of,. We stress here that the
dashed lines in Fig. 12 have slopes equaC{ptaken from
the corresponding log-normal tails &I").

Finally we would like to compare our resyB0) with the
results known from the random matrix theory. Although the
, I ; distributions of the proper delay timg56,57 and partial
®, ®, o, delay times(defined as a derivative of the partial phasef

w® the S matrix with respect to energ\52] have been calcu-
lated recently, there is no explicit analytical formula for the
distribution of the Wigner delay times for number of open
channelsM >2 [58]. Nevertheless using consideration simi-

and by substituting the small resonance width asymptotid@' to one presented abovsee the discussion far<I'g")

given by Eq.(29) we come out with the log-normal law of One can argugs2] that the part ofP(7) for 7<I'g" is the

Eqg. (30) in agreement with our numerical findings reported same in the RMT as stated in E@0). However, the distri-

in Fig. 12. bution of the large delay times in the RMT is expected to
Now we estimate the behavior 87 for r<I';'. Inthis ~have a power-law behavidP(r)~1/r**#"2 with M being

regime many short-living resonances contribute to the sunf€ number of open channels. This is in contrast with a log-

(43). We may therefore consideras a sum of many inde- normal tail stated in E(30).

pendent positive random variables each of the type

=T'X,, Wherex,=dw,?. Assuming further thabw,, are

uniformly distributed random numbers we find that the dis- VIIl. CONCLUSIONS

t”bég'on P(xn) has the asymptotic power-law behavior  Thjs paper is devoted to the investigation of chaotic and
1/x;“. As a next step we find that the distributid®(7,)  disordered systems characterized by the classical diffusion.
decays asymptotically as #4/* where we use thaP(I';)  Section V deals with study of the closed system. Specifically,
~1/F§’2. Then the corresponding(r) is known to be a we perform a detailed numerical analysis of the eigenfunc-
stable asymmetric Levy distributioh , 1(7) of index u tion intensitiesP(y) of the two-dimensional kicked rotor on

= 1/2[55] which has the form given in E¢30) at the origin.  a torus. Our results indicated that the distributiBy) of

We point out here that the asymptotic behavifX ) generic quantundynamicalsystems with diffusive classical
~1/7%"2 emerges also for chaotic/ballistic systems where thdimit is affected by the existence gqfrelocalizedstates. The
assumption of uniformly distributedw,, is the only crucial deviations from RMT are well described by field theoretical

4r2 |

FIG. 11. Schematic plot for the Wigner delay time as a function
of quasienergy according to E@3).

FIG. 12. The proper delay times distribution
P(7q) for D=20.3 (O) and D=29.8 (O). The
(@) correspond td = 20.3 but now with broken
TRS. The dashed lines have slopes equaCfo
extracted from the correspondir(I") (see Fig.
8). In the inset we reporP(7,) for moderate val-
ues of 7y in a double logarithmic scale.
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methods developed for disordered systems. In particular, we U=e Hol(£1,£2)2g=iV(01,05) g=iHo(L1,L)/2 (A1)
find that the dependence of the tails Bf(y) on TRS is
described correctly by NLSM. The set of the orthogonal eigenfunctions of the free Hamil-

Section VI deals with the study of the open system. AftertonianH is given by plane waves in the angle representation
introducing a scattering formalism for the KR model we in-
vestigated the distribution of the resonance widkE) and
Wigner delay timesP(7). We obtain the forms of these dis-
tributions(log normal for larger and smalll’, and power law
in the opposite cagefor different symmetry classes and They are normalized in such a way that
show that they are determined by the underlying diffusive e rom
classical dynam|cs. and by the existence of the preIocallzgd f 6,40, b )(91,02”2: 1. (A3)
states. Our theoretical arguments are supported by extensive 0 12
numerical calculations.

Although the arguments, we used to explain the behavioket us denote byJ ), n, the matrix elements of the
of P(I') and P(7), can be easily generalized to the three-evolution operator in this basis
dimensional case, the numerical test of these predictions has
not been still performed. Moreover the study of three- Uk, ky).(ny.10) = (ks k) U D, ) (A4)
dimensional case would allow us to investigate these distri-
bution at the critical point of the metal-insulator transition. According to the definition of the evolution operator the
The first attempt to attack this problem was done in Refmodulus square of its elements have the meaning of the

1
¢(n1,n2)(01!92): Zeu(nlﬁﬁnzf;‘z)_ (A2)

[59], but a detailed understanding is still required. probability to change the initial momentunm,(,n,) to the
final momentum k4 ,k,) in one kick. Therefore one can de-
ACKNOWLEDGMENTS fine themean free path in momentum spdéé by
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Here we used the fact th&l) . «m, k,+m,).(n, +m,.n,+my|°
:|U(k1,k2)v(n1vnz)|z' so without loss of generality one can
Let us consider the evolution operator of the two-take the initial momentum equal to (0,0). In order to calcu-
dimensional kicked rotor introduced in E() (to simplify  late the right-hand side of EQA5) we first give an explicit
the calculations we puf=1) expression to the matrix eIemeﬂJﬁkl,kz),(nlvnz) X

APPENDIX A: THE MEAN FREE PATH

U(kl,kz),(nl,nz):i%t <¢(k1,k2)|e_iH°(£1’LZ)/2| by i ple VD] P W ps e Hollr L2172 b(ny ny))

:efi[HO(kl,k2)+H0(n1,n2)]/2<¢(k K )|e7iV(91,62)|¢(n N )>efi[HO(k1,k2)+HO(n1,n2)]l2i
172 172

472
am [2m —iV(0y,05) i (ng—kq) 1 +i(Np—Kp) 0
Xfo . dé,d6,e”! (01,02) gi (N1 —kq) 01 +i(np—kp) O (AB)
Taking (k;,k;)=(0,0) and (Q4,n,)=(ry,r,) we obtain
. 1 27 (27w X . .
— a—i[Hg(0,0)+Hq(rq,rp)1/2 —iV(01,05) Air 1601 qir 26
U(OYO),(rlyrz) e 0 ot'1-72 477-2[() o dﬁldﬂze 172/ 1"1e" 272, (A?)
The substitution of this expression into E&5) yields
1 27 (27 (27 (2w _ . -~ o~ . ~ ~
2-5 S (12412 J f f J 10,0 0,0B,6B,e~ V(010 VL D git(n=Tgiral =7 (ag)
non (47%)2Jo Jo Jo Jo

Taking into account that
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—_— 2 -
r2eir a1 01y = a_Neirl(ﬁrﬁll) (A9)
960,90,

and that the same is valid fop the partial integration of the E¢A8) gives

1 27 (27 (2@ (2w - 32 0"2 . -~ o~ ) ~ ~
|f/|=z E —f f f d6,d6,d0,d0,| ———+ | @7 1[V(01.,02) = V(01,62)] oir 1(61~ 01) gir2(02— 02)
n n (47%)2%Jo Jo Jo Jo 30190, 96,06,
(A10)
The summation of the exponents ovgrandr, yields two & functions:
P il e ey d* d* i[V(0y,05)— V(81 ,85)] = v
12 =—— f f d6,d0,d0,d0,| —— +———=— | e V(01,02 =V (1.0 59, —,) 5(6,— B5)
M ax2)o Jo Jo Jo AT 360100, 96,90, v 2
_ 1! ZWJZ’TF”F”daded”ed"é N 01,00 By B+ Y (01,00 2 (BB
am2lo Jo Jo Jo TR g0 T T g, TR 00, T T g, R
x @~ 1V(0L.02) V(01,021 59, — D) 5( 0,— )
_1 2szwom de[(w(e 0,) g (N(e 0))1 (A11)
Cax2lo Jo VN0 TR a6, )|

The last expression can be written in a compact form 1
|§,|=Fk2(77'2 cos a+ w2 sirt a+ w2 cos a+ 7 sirf a)
a

1 27 (27 o
1= 2f f do,d6,|VV(6,,60))]%.  (A12) K2
47%Jo Jo - (A15)

Now we calculate Fhe mean free path in the case Wher9\/hich is the same result as the one derived in R&f.for
the potentialV (64, 6,) is given by Eq.(2): different potential/( 6., 6,).

V(61,6,)=k[cog #;)coq 6,)cog @) APPENDIX B: DIFFUSION COEFFICIENT IN THE
©1sin(26,)c0826,)sia)].  (AL3) RANDOM-PHASE APPROXIMATION

Here we give for completeness of the presentation the
Taking the derivative of this expression with respectfto  derivation of the diffusion coefficient for our model), (2)
and 6, one has in the random-phase approximation. We start by writing the
classical maps Eq.3) for the general form of the potential
2 V( 01 y 92):
=k2(sir? 0, cog 6§, cos a+cos 26,

Y
W(elyez)
1 f1(n+1)=6,(n)+ 7, TLy(n) mod 27,

X cog 26, sirf a— 2 siné; cos 20, cosé,
0,(n+1)=0,(n)+ 7,TLy(n) mod 27,
X c0os 20, cosa Sina),

oV
oV 2 [’l(n+1)=£l(n)_ﬁ[al(n+l)102(n+l)]1
(—(61,02)) =k?(cog 6, sir? 6, cos a '
702 NV
+sir? 26, sir? 26, sir’ a Lo(n+1)=Ly(n)— (9—02[01(n+ 1),6>,(n+1)]

+ 2 cos#, sin 20, sin 6, sin 26, cosa Sina). —Si26,(n+1)]si 26,(n+1)]sin( ).

The integration ovep, and 6, yields for the mean free path The diffusion coefficient in momentum space is defined as
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<£f(t) +£§(t)> APPENDIX C: UNITARITY OF THE S MATRIX

D= lim t ' (B2) Let us rewrite the expression f&matrix (16) in a more
symmetric way. To this end we use a series expansion for
The average in this expression is taken over an ensemble afverse operator in Eq16):

trajectories, with different initial conditions. Using the clas-

sical maps for£, and £, we obtain

t—oo

[U-e *—~W'wuU] !

o é (av o )2 - R
D=lim 7 3 | | 55, [01).62(0)] =[(U-em)| - o Wwu
2 -1
+(M [01<|>,02<i>]) > e wwu|
U-e '@ U—e'?

1 K
—— _wW'wu| ——— (D
U—e'® U—e '@

k=0
Vv _ A . :
+(9—02[91(|),92(')](9—92[91(1),92(1)] . (B3)  Substituting this expansion in E¢L6) we obtain
For the large values of the kicking strengthin a good 1 kg
approximation one can consider the phagg@) and 0,(i) S= 2 WU(—_WTWU t
as random variables which are uncorrelated for diffeiient k=0 U—e'® U—e'®
and distributed uniformly in the intervdD,2#]. Using this
random-phase approximation it is easy to show that only the .
diagonal terms in Eq(B3) give nonzero contribution in the 1 k+1 WUU—e““’W
limit n—o. Taking into account that the distribution of the = 2 WU—.WT) =
phases is uniform one can convert the sum for the diagonal k=0 U-e ' 1 +
terms into an integral. Finally we obtain I-Wu _ W
! Fﬂfzwdedeuwea))z W v Wt W Y wt
Can2Tlo Jo PR 391( 1 U—e @ U—e '@
= =— — . (C2
NV ? wi-—2 Jw ow—w
+(_(01,62) . (B4) U_e*iw U_e*iw
30,
Then the formula for the diffusion coefficient measured inNow using the unitarity of the evolution operatdrwe can
number of kicksD,=TD is given by calculate the Hermitian conjugag&matrix:
1 27 (27 N 5
o= | [ Tavdedvvioolr @9 Ut ot
47cJo 0 We———— t W—WT
. . . ) U*l elw e*lw_U
which has exactly the same form as one appearing in Eq. S'=-— » =—
(A12). Thus we obtain that in the random-phase approxima- W € wt W U wt
tion the following relation between the mean free path and U l-gle e lo_y
the diffusion coefficient is valid:
e—iu)
k? t
Dk=|ﬁn=§- (B6) Wu—e*iww
=— 5 =s 1 (C3)
Therefore changing the kicking strength we can easy tune the W = w'’
diffusion constant or Thouless conductar(éer disordered U—-e '
systems This allows us to investigate various regimes: bal-
listic, diffusive, and localized. Thus the unitarity of thes matrix is proven.
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