
PHYSICAL REVIEW E 68, 066215 ~2003!
Signatures of classical diffusion in quantum fluctuations of two-dimensional chaotic systems

Tsampikos Kottos, Alexander Ossipov, and Theo Geisel
Max-Planck-Institut fu¨r Strömungsforschung und Fakulta¨t Physik der Universita¨t Göttingen,
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~Received 8 July 2003; published 31 December 2003!

We consider a two-dimensional~2D! generalization of the standard kicked rotor and show that it is an
excellent model for the study of universal features of 2D quantum systems with underlying diffusive classical
dynamics. First we analyze the distribution of wave-function intensities and compare them with the predictions
derived in the framework of diffusivedisorderedsamples. Next, we turn the closed system into an open one by
constructing a scattering matrix. The distribution of the resonance widthsP~G! and Wigner delay timesP(tW)
are investigated. The forms of these distributions are obtained for different symmetry classes and the traces of
classical diffusive dynamics are identified. Our theoretical arguments are supported by extensive numerical
calculations.
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I. INTRODUCTION

Random matrix theory~RMT! was invented more than 5
years ago by Wigner in order to describe the statistical pr
erties of complex nuclei@1#. In recent years the fast deve
opments in mesoscopic physics and quantum chaos
given a new boost to the RMT approach@2,3#. The strength
of RMT consists in the universality of its predictions co
taining no energy or length scales or any parameter de
dence. At the same time this is its weakness, because it
not allow us to take into account various phenomena app
ing in mesoscopic systems which introduce new len
scales or parameters in the system.

The break down ofuniversalityand the traces of the un
derlying classical dynamics are important topics in quant
chaos studies and have major applications in mesosc
physics. It is therefore highly important to compare the
sults from RMT models to the results from systems that h
a semiclassical limit, and to look for circumstances wh
semiclassical tools rather than RMT become relevant. In
paper we extend our previous studies@4,5# on two-
dimensional chaotic systems with underlying classical dif
sion paying attention to applications of our results for ra
dom lasers and microwave absorption. We identify
signatures of classical diffusion in quantum fluctuations
analyzing the distribution of wave-function intensities
closed systems, and the resonance widths and Wigner d
times of their corresponding scattering analogs.

Our analysis is based on a two-dimensional~2D! gener-
alization of the well-known kicked rotor~KR! model . For
large values of the kicking strength the model is classica
chaotic and the dynamics is diffusive. The detailed analy
of the classical system allows us to extract the relevant
rameters that penetrate into the quantum-mechanical des
tion. The quantum analog showsdynamical localization
@6–9# with eigenstates which are exponentially localized in
similar fashion as the eigenstates of disordered syste
However here the localization occurs due to complicated
terference effects created by the underlying classical cha
dynamics. Attempts were made to put this analogy betw
the kicked rotor and disordered systems@7,10# on a solid
1063-651X/2003/68~6!/066215~15!/$20.00 68 0662
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base but the problem is still not solved completely@9#.
Since the pioneering work of Anderson@11# it is known

that the diffusion indisorderedsystems can be affected ver
strongly by quantum localization. If the system size exce
the localization length, then the diffusion is completely su
pressed after the time needed for the wave packet to sp
over the scale of the localization length. But even in t
absence of strong localization the existence ofprelocalized
states@12–20# influences the behavior of different physic
quantities in the diffusive regime. Having this in mind, it
legitimate to ask, what happens with deterministicchaotic
systems when quantum-mechanical description becomes
evant? Our analysis shows that prelocalized states are pre
also in the case of dynamical systems and affect vari
statistical quantities such as resonances and Wigner d
times. For the analysis of the latter quantities, we turned
closed KR to a scattering system by imposing ‘‘absorptio
to a set of momentum states. The resulting scattering ma
is written in terms of the unitary evolution operator of th
corresponding closed system and a projection operato
detailed description of this construction is presented.

The paper is structured in the following way. In Sec. II t
classical model is introduced and the main definitions
given. Sections III and IV are devoted to the correspond
quantum-mechanical system. The quantization on a toru
presented in Sec. III, while in Sec. IV we present a detai
construction of the scattering matrix. Sections V and VI a
dedicated to the analysis of various statistical properties
the closed and the open 2D KR model correspondingly.
nally, our conclusions are summarized in Sec. VII.

II. THE CLASSICAL 2D KICKED ROTOR

A prominent example of a system with classical diffusi
is, the well known in the field of quantum chaos, the K
model @6#, which consists of the free propagating rot
driven periodically in time by an external force. Since t
total energy of a driven system is not a constant of mot
any more, the chaotic behavior can appear even in the
case.

Although many results are known for the standard 1D K
©2003 The American Physical Society15-1
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FIG. 1. Poincare´ section of the classical phase space for Hamiltonian~1! for ~a! k50.36, ~b! k56.37.
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there is almost no study for its two-dimensional generali
tion, besides Ref.@8# where the authors have focused on t
analysis of dynamical evolution. The corresponding mode
described by the following Hamiltonian:

H5H01kV~$u i%!(
m

d~ t2mT!, ~1!

H0~$Li%!5(
i 51

2
t i

2
~Li1g i !

2,

where the indexi 51 ~2! is related to the first~second! rotor
correspondingly.Li denotes the angular momentum andu i
the conjugate angle of one rotor. The kick period isT, k is the
kicking strength, whilet is a constant inversely proportiona
to the moment of inertia of the rotor. The parameterg is an
irrational number whose meaning will be explained belo
The Hamiltonian~1! describes a system which is kicked p
riodically in time. Another representation of the Hamiltonia
~1! may be given by one rotor moving on a two-dimension
sphere. The two rotors are interacting with each other by
potential

V~$u i%!5@cos~u1!cos~u2!cos~a!

1 1
2 sin~2u1!cos~2u2!sin~a!#. ~2!

The parametera breaks time-reversal symmetry~TRS!. The
form ~2! was chosen so as to minimize the effect of symm
try breaking on the classical diffusion constantD ~see be-
low!.

The classical equations of motion which correspond to
Hamiltonian ~1! can be integrated over the kick periodT
giving a set of simple maps:

u1~n11!5u1~n!1t1TL1~n! mod 2p,

u2~n11!5u2~n!1t2TL2~n! mod 2p,

L1~n11!5L1~n!2k$2sin@u1~n11!#

3cos@u2~n11!#cos~a!1cos@2u1~n11!#

3cos@2u2~n11!#sin~a!%,
06621
-

is

.

l
e

-

e

L2~n11!5L2~n!2k$2cos@u1~n11!#sin@u2~n11!#

3cos~a!2sin@2u1~n11!#

3sin@2u2~n11!#sin~a!%, ~3!

whereu i(n) andLi(n) are the values of the dynamical var
ables taken just after thenth kick. The motion generated b
this set of maps is integrable in the absence of the kick
potential. For sufficiently small but nonzerok the phase
space of this system contains both regular islands and cha
sea@see Fig. 1~a!#. Whenk is large enough then the dynamic
becomes fully chaotic@see Fig. 1~b!# and there is diffusion in
momentum space~Fig. 2! with diffusion coefficient

D[ lim
t→`

^L2~ t !&
t

.
k2

2T
. ~4!

The last expression is correct within the random-phase
proximation@6,8,21# ~see Appendix B!.

The corresponding open system is described by the s
set of equations~3! as the closed one, on top of which w
add absorbing boundary conditions, namely, we setLi equal
to zero, if Li,0 or Li.L. These conditions give to ‘‘the
particles’’ the possibility to escape from the system. The e
lution of the classical densityr(x,y,t) is described by the
Frobenius-Perron equation, which takes in our case the f
of the following diffusion equation:

FIG. 2. Diffusion in momentum space fork59.1.
5-2
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SIGNATURES OF CLASSICAL DIFFUSION IN . . . PHYSICAL REVIEW E68, 066215 ~2003!
]r

]t
5

D

4
Dr ~5!

with absorbing boundary condition

JWn[2
D

4
~¹W r!n52Fn , ~6!

which sets the flux at the boundaryJWn to be equal to the
number of particlesFn carried out under one iteration of th
map. The solution of Eqs.~5! and ~6! can be represented a
the superposition of the diffusive eigenmodesvk(x,y):

r~x,y,t !5 (
k51

`

cke
2gktvk~x,y!, ~7!

wheregk are the corresponding eigenvalues andck are coef-
ficients determined by the initial condition. The asympto
behavior of the density is governed by the smallest eig
value g1[Gcl . As a consequence one has an exponen
decay of the classical survival probabilityP(t)
5**dxdy r(x,y,t):

P~ t !}e2Gclt. ~8!

The classical decay rateGcl;D/L2 can be estimated as th
inverse time needed for the particle to reach the bound
~Thouless time!. The exact value of the classical decay ra
can be obtained as the solution of the corresponding eig
value problem or from the numerical calculation ofP(t). In
Fig. 3 we present the results of our numerical calculations
P(t) for some representative parameters.

III. QUANTIZATION ON A TORUS

Because of the periodicity of the external force a tim
dependent solution of the KR model can be represented
superposition of Floquet states@22#. These are the eigen
states of the evolution operator for one period~Floquet op-
erator!. For kicked systems the interaction with extern
force is instantaneous and one can factorize the total Flo

FIG. 3. Exponential decay of the classical survival probabi
for open kicked rotor model.
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operator into the product of the evolution operators cor
sponding to the free propagation and the interaction. Due
this fact the kicked systems are very convenient for num
cal study.

If the Li are taken mod(2pmi /Tt i) wheremi are inte-
gers, Eq.~1! defines a dynamical system on a torus. T
quantum mechanics of this system is described by a fin
dimensional time evolution operator for one period:

U5exp@2 iH 0~$Li%!T/2#exp@2 iV~$u i%!#

3exp@2 iH 0~$Li%!T/2#, ~9!

where we put\51. In the above representation,U is sym-
metric and describes the evolution in the middle of the ro
tions between two successive kicks. Upon quantization,
ditional symmetries associated with the discreteness of
momentum show up, which can be destroyed by introduc
irrational values for the parametersg i ’s. The most striking
consequence of quantization is the suppression of clas
diffusion in momentum space due to quantum dynamical
calization @6,7#. We introduce the eigenstate componen
Ck(n) of the Floquet operator in the momentum represen
tion by

(
m

UmnCk~n!5eivkTCk~n!. ~10!

The quantitiesvk are known as quasienergies, and their de
sity is r5T/2p. The corresponding mean quasienergy sp
ing is D51/(rLd), whereL is the linear size of the system
andd is the dimensionality (d52 in our case!. The Heisen-
berg time istH52p/D while tD5L2/D is the diffusion time
~Thouless time!. Now one can formally define a dimension
less conductance as

g5tH /tD5DkL
d22, ~11!

whereDk5TD is the diffusion coefficient measured in num
ber of kicks. Four length scales are important here: the wa
length l, the mean free pathl M , the linear extent of the
systemL, and the localization lengthj. In the rest of this
paper we will always assume that

l! l M!L!j. ~12!

The first condition ensures that transport between scatte
events may be treated semiclassically. This limit can
achieved for our system~1! when k→`, T→0 while the
classical parameterK5kT remains constant. Whenl M!L as
long as the motion is not localized~i.e., L!j) it is diffusive,
since a particle scatters many times before it can traverse
system. The resulting mean free path for our system~1! is
l M.ADk ~see Appendix A! while the localization length for
d51 is j.Dk/2 @6# and ford52 is j. l MeDk/2 @8,23#.

A great advantage of the kicked rotor consists in the f
that due to the unitarity of the evolution operator all
eigenstates have the same statistical properties. This
contrast to the eigenstates of Hamiltonian models~such as
Anderson model!, where the eigenstates belonging to diffe
5-3
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ent parts of the spectrum have different statistical proper
and therefore they must be picked up from a narrow ene
window. This allow us to collect a huge set of numerical d
and perform a rather accurate numerical analysis. The re
of our investigation will be discussed in Sec. V.

IV. THE SCATTERING APPROACH

To proceed with the analysis of the resonance widths
delay times we turn the closed 2D KR model~9! into an
open one. To this end we impose ‘‘absorption’’ at the boun
ary of a square sample of sizeL3L in the momentum spac
in complete analogy with the classical setup. In other wor
every time that one of the components of the tw
dimensional momentum (L1 ,L2) takes on the value 1 orL,
the particle leaves the sample. The corresponding uni
scattering matrixS ~see Appendix C! is given @24# by

S~v!5AI 2WW†2WU
1

e2 iv2AI 2W†WU
W†, ~13!

whereI is theL23L2 unit matrix andW is anM3L2 matrix
with matrix elements

Wi , j~k,A!5H wi , i 5 j

0, iÞ j
~14!

with wi
2P@0,1# the tunnel probability in modei. In the case

of perfect coupling, which is considered here,wi51. Then
WW†5I M3M and W†W is an L23L2 diagonal matrix with
M nonzero elements equal to one. From the physical poin
view, W describes at which ‘‘site’’ of theL3L sample we
attachM ‘‘leads’’ @in our caseM54(L21)]. HereW†W is a
projection operator onto the boundary, whileP[I 2W†W is
the complementary projection operator which satisfies

AI 2W†W5I 2W†W. ~15!

Taking this into account, the expression~13! can be simpli-
fied:

S~v!52WU
1

e2 iv2~ I 2W†W!U
W†

5WU
1

U2e2 iv2W†WU
W† ~16!

and using the unitarity of the evolution operatorU we can
rewrite the last expression as follows:

S5W
1

I 2W†W2U†e2 iv
W†. ~17!

The scattering matrix~17! can equivalently be written in the
form used conventionally in quantum chaotic scattering:

S~v!52WUeiv
1

I 2eivPU
W†. ~18!
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The scattering matrixSi j given by Eq.~18! can be interpreted
in the following way: once a wave enters the sample, it u
dergoes multiple scattering induced by@ I 2eivPU#21

5(n50
` (eivPU)n until it is transmitted out. It is clear there

fore that the matrixŨ5PU propagates the wave inside th
sample. However, contrary to the closed system in which
evolution operator is unitary, the absorption breaks the u
tarity of the evolution matrixŨ.

The eigenvalues ofŨ occurring at complex quasienergie
ṽn5vn2( i /2)Gn are the poles of the scattering matrix. The
represent long-lived intermediate states to which bou
states of a closed system are converted due to couplin
continua. Herevn and Gn are the~dimensionless! position
and width of the resonances, respectively.

Having at our disposal the scattering matrixS we can
calculate the Wigner-Smith delay time. It captures the tim
dependent aspects of quantum scattering and formally
defined as

tW~v!52 i
d

dv
ln detS~v! ~19!

and can be interpreted as the typical time an almost mo
chromatic wave packet remains in the interaction region.

A generalization of the notion of Wigner delay time
given through the Wigner-Smith operator. The latter is d
fined as~for the kicked rotor model one should use quasie
ergy instead of energy in the definition of Wigner-Smith o
erator!

Q5
1

i
S†

]S

]v
. ~20!

Introducing a new operator

K[
1

I 2W†W2U†e2 iv
~21!

and taking the derivative of both sides of Eq.~17! we obtain

]S

]v
5W

]K

]v
W†

5W
1

I 2W†W2U†e2 iv
~2 i !e2 ivU†

3
1

I 2W†W2U†e2 iv
W†

52 ie2 ivWKU†KW†. ~22!

Then the definition of the Wigner-Smith yields

Q52 ie2 ivWK†W†WKU†KW†. ~23!

The Wigner delay time can be expressed as the sum
proper delay timestq . The latter are the eigenvalues of th
Wigner-Smith operator~23!.
5-4
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V. DISTRIBUTION OF EIGENFUNCTION INTENSITIES

The statistical properties of wave-function intensities ha
sparked a great deal of research activity in recent ye
These studies are not only relevant for mesoscopic phy
@12–20,25–30#, but also for understanding phenomena in
eas of physics, ranging from nuclear@31# and atomic@32,33#
to microwave physics@34–37# and optics@38#. Experimen-
tally, using microwave cavity techniques it is possible
probe the microscopic structure of electromagnetic wave
plitudes in chaotic or disordered cavities@34–37#. Recently,
the interest in this problem was renewed when new effect
field theoretical techniques were developed for the study
the distribution of eigenfunction intensitiesP(ucu2) of ran-
dom Hamiltonians. As the disorder increases, these res
predict that the eigenfunctions become increasingly non
form, leading to an enhanced probability of finding anom
lously large eigenfunction intensities in comparison with t
random matrix theory prediction. Thus, the notion ofprelo-
calized states, i.e., states which are localized much m
strongly than typical eigenstates, has been introduced@12–
17# to explain the appearance of long tails in the distributio
of the conductance and other physical observables@12#.

Up to now all theoretical predictions@12–20,25,30# and
numerical calculations@27–29# apply to disordered system
and are based on an ensemble averaging over disorder
izations. Their validity, however, for a quantumdynamical
system~with a well-defined classical limit! that behaves dif-
fusively is not evident. Here we show that prelocalized sta
exist also for dynamical systems with underlying classi
diffusion and investigate the effect of these states inP(ucu2).
An example of them is reported in Fig. 4. Our main conc
sion is that in a generic dynamical system with classical
fusion, P(ucu2) is described quite well by the nonlinears
model ~NLSM!. We point out that between the various th
oretical works there is a considerable disagreement abou
parameters that control the shape ofP(ucu2) and their depen-
dence on TRS. More specifically, the NLSM suggests t
the tail of P(ucu2) in two dimensions is sensitive to TR
@16–19,25#, while a direct optimal fluctuation~DOF! method
predicts a symmetry independent result@20#. This prediction
was an additional motivation for the present study.

FIG. 4. An example of anomalously localized state. The size
the system isL3L590390, the diffusion coefficientD533.8.
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In the following section we calculate the distributio
function P(y5LduCk(n)u2) by using a direct diagonaliza
tion of the Floquet operator~9!. The TRS is broken entirely
for a55.749, i.e., the phase difference for a typical trajecto
and its time-reversal counterpart is larger than 2p, so that all
interference effects between time-reversal trajectories
suppressed. In order to test the issue of dynamical corr
tions, we randomize the phases of the kinetic term of
evolution operator~9! and calculate the resultingP(y). This
model will be referred to as random-phase KR~RPKR!.
Since all our eigenfunctions have the same statistical pr
erties ~in contrast to the Anderson cases where one sho
pick up only eigenfunctions having eigenenergies within
small energy interval@27–29#! we make use of all of them in
our statistical analysis. The classical parameterK.6.36 is
large enough in all cases to exclude the existence of
stability islands in phase space, the accelerator modes kn
for KR @21,39# are avoided as well. The influence of th
accelerator modes on the eigenfunction statistics is an in
esting problem, which is out of the scope of the present st
and deserves a separate investigation. The classical diffu
coefficientDk is calculated numerically by iterating the cla
sical map obtained from Eq.~1!. Below we present our nu
merical results and compare them to the predictions of R
@13–20,25#.

A. Numerical results

Let us start our numerical analysis from the ballistic r
gime whereg→`. In this case, RMT is applicable and on
finds @3#

P(b51)
RMT ~y!5exp~2y/2!/A2py, ~24!

P(b52)
RMT ~y!5exp~2y!. ~25!

Here b denotes the corresponding Dyson ensemble:b
51(2) for preserved~broken! TRS. This result can be easil
understood. Indeed, within the random matrix theory o
assumes that all the eigenvector components are indepen
~the normalization of the eigenvector is not essential in
thermodynamic limit, i.e., when the number of its comp
nents becomes very large! random variables obeying Gaus
ian distribution. Going to the distribution of the modulu
square of the components one immediately recovers
~24!. For the case of the broken time-reversal symmetry o
should take into account that each component has sta
cally independent real and imaginary parts, leading to
distribution given by Eq.~25!. The numerical data presente
in Fig. 5 show that the distributions of the eigenfunctio
intensities in the ballistic regime for the two-dimension
kicked rotor are described very nicely by the RMT pred
tion.

As the ratio between the system size and the localiza
length increases, the deviations from the RMT results of
body and the tails of the distributionPb(y) become notice-
able and can be parametrized by a single parameter whic
the dimensionless conductanceg5Dk . For y,Dk , accord-
ing to all studies@14–18# P(y) is just the RMT result with

f

5-5



-

q.
s of
as-
nd
e

of

of
t

e-
of
ort

o is
r-

dy-

M

of
s

al-

KOTTOS, OSSIPOV, AND GEISEL PHYSICAL REVIEW E68, 066215 ~2003!
polynomial corrections in powers ofL/Dk , i.e., Pb(y)
5P b

RMT(y)@11dPb(y)#. The leading term of this expan
sion is given by

dPb~y!.kH 3/423y/21y2/4 for b51

122y1y2/2 for b52,
~26!

wherek is the 2D diffusion propagator~time-integrated re-
turn probability!, which is identical forb51 andb52 since
it is a classical quantity.

Figures 6~a! and 6~b! show corrections toP b
RMT for g

5Dk@1 for two representative values ofDk . We find again

FIG. 5. Distributions of the eigenfunction intensities in the b
listic regime for two-dimensional kicked rotor~solid lines! com-
pared with the RMT predictions~dashed lines!.
06621
that the form of the deviations are very well described by E
~26! and the agreement becomes better for larger value
the diffusion constant. This is due to the fact that by incre
ing Dk we are approaching the semiclassical region a
therefore Eqs.~12! are better satisfied. At the same tim
higher-order corrections indPb(y) become negligible with
respect to the leading term given by Eq.~26!.

In Fig. 6~c! we summarize our results for variousDk val-
ues. The extractedkb values are obtained by the best fit
the data to Eq.~26!. Again we find thatkb depends linearly
on 1/Dk . However,k1 and k2 are different. Moreover the
best fit withkb5AbDk

211Bb yields Ab5155.4460.03 and
Ab52510.8460.04 indicating that the ratioR5A2 /A1 is
close to 2, a value that could be explained on the basis
ballistic effects@19,25,27,29#. Taking the latter into accoun
leads to an additional term in the classical propagatorkb
5kdi f f1(b/2)kball . The first term is the one discussed pr
viously and is associated with long trajectories which are
diffusive nature while the latter one is associated with sh
ballistic trajectories which are self-tracing@19,25#. Thus,
when kdi f f!kball we get R52. The calculation with the
RPKR model shows, however, that the corresponding rati
R.1 in agreement with the theoretical prediction for diso
dered systems with a pure diffusion. This indicates that
namical correlations can be important.

For the tails of the distributions, the result of the NLS
within a saddle-point approximation@16,17,19,25# is

Pb~y!.exp@2Cb
s~ ln y!2#, Cb

s5
bp2r

2

D

ln~L/ l !
. ~27!

Note that the decay in the tails of Eq.~27! depends onb.
Recently, a DOF method was used to calculate the tails
Pb(y) @20# for the white-noise random potential. It wa
-
FIG. 6. Corrections to the distribution inten
sitiesdPb(y) for the two-dimensional kicked ro-
tator model~9!. The system size isL590, ~s!
b51, ~L! b52. The solid~dashed! lines are the
best fit of Eq.~26! for b51~2! to the numerical
data: ~a! Dk'34 and~b! Dk'53; ~c! fit param-
eterskb vs Dk

21 . The solid~dashed! lines are the
best fits tokb5AbDk

211Bb for b51~2!.
5-6
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FIG. 7. ~a! Tails of the distributionPb51(y
.Dk) for the model~9! andDk.35. The system
size is L580, ~s! b51, ~L! b52. The solid
~dashed! lines are the best fit of Eq.~27! for
b51~2! to the numerical data.~b! Fitted log-
normal coefficientsCb vs the classical diffusion
coefficientDk . The solid ~dashed! lines are the
best fits toCb5AbDk1Bb for b51~2!.
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found that the tails are still given by Eq.~27! but with a
log-normal coefficientC which is independent of the param
eterb:

CDOF5p2r
D

ln~L/l!
. ~28!

Figure 7~a! shows a representative case ofPb51(y
.Dk). The tails show a log-normal behavior predicted
Eq. ~27!. In Fig. 7~b! we report the log-normal coefficient
Cb extracted from the best fit to our numerical data ver
the classical diffusion coefficient. A pronounced linear b
havior is observed in agreement with both theories. Howe
one clearly sees thatC1 differs from C2 in contrast to the
DOF prediction~28! and to recent numerical calculation
done for the 2D Anderson model@27#. We point out here tha
in Ref. @27# the authors were not able to go to large enou
values of conductanceg ~in comparison to our study! where
the theory can really be tested. In contrast, the NLSM p
dicts a value of 2 for the ratioR5C2

s/C1
s . We note thatCb

s

is only the leading term inDk . In order to calculate this
ratio, we performed a fit to our data withCb5AbDk1Bb .
The resulting ratio was found to beR5A2 /A151.9760.03
in perfect agreement with the NLSM predictions. Finally
Fig. 7~b! we also present our results for the RPKR mod
@using the same data as the one in Fig. 6~c!#. Again we found
that the ratioR51.9660.03'2. ThusP(y.Dk) depends on
TRS and is described by the NLSM. The fact that the p
diction of a DOF method is not observed in our calculatio
might be due to nonuniversal~depending on the type of dis
order! character of this result.

VI. OPEN SYSTEMS: DISTRIBUTION OF RESONANCES
AND DELAY TIMES

In this section we analyze the statistical properties
resonancesP~G! and Wigner delay timesP~t! for a 2D dif-
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fusive system. This study is important for various applic
tions among which are diffusive random lasers and mic
wave cavities @40–44# where most of the theoretica
treatment is limited by RMT. We point out here that curre
developments of microwave experiments in random diel
tric media in the diffusive regime@45# may allow us a direct
comparison between theory and experiment.

Specifically, we have found that the resonance width d
tribution P~G! is given by

P~G,Gcl!;exp@2Cb~ ln G!2#, where Cb;bD,

P~G*Gcl!;AD

L2

1

G3/2
~29!

while the distribution of the Wigner delay times is given b
the following expressions:

P~t&Gcl
21!;

1

t3/2
exp~2s/t!,

P~t.Gcl
21!;exp@2Cb~ ln t!2#, ~30!

where D is the classical diffusion constant,b denotes the
symmetry class, ands is some constant of order unity.

Our theoretical considerations are supported by numer
calculations for the open analog of the 2D KR model d
scribed in Secs. II and IV. The parameters of the model w
chosen in such a way that the conditions~12! discussed in
the preceding section were fulfilled. In order to improve o
statistics, we randomized the phases of the kinetic term
the evolution operator~9! and used a number of differen
realizations. The results of the preceding section allow u
conclude that this procedure does not change the unive
features of the model. In all cases we had at least 60 000
for statistical processing.
5-7
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KOTTOS, OSSIPOV, AND GEISEL PHYSICAL REVIEW E68, 066215 ~2003!
A. Resonance widths distribution

For diffusive mesoscopic samples, there is no system
investigation ofP~G! besides Ref.@46# where the authors
have focused on the large tails ofP~G! for a quasi-1D system
in the diffusive regime. This deficiency is felt especia
strong in the random-laser community where one wants
know the statistical properties of the lasing threshold.

Usually we model random laser as a disordered or cha
system containing a dye that is able to amplify the radiat
with a rateh, in a certain frequency interval. In contrast
the traditional lasers where the necessary feedback is du
mirrors at the boundaries of the laser cavity, the key mec
nism for random lasers is the multiple-scattering inside
medium@40#. The lasing threshold is given by the value
the smallest decay rate~i.e., smallest resonance width! of all
eigenmodes in the amplification window@47,48#. The under-
lying reasoning is that in the mode with the smallest de
rate the photons are created faster by amplification than
can leave~decay! the sample.

Assuming that the number of modesK@1 that lie in the
frequency window where the amplification is possible ha
resonance widthsG that are statistically independent one ge
for distribution of lasing thresholdsP̃(G) @47–49#:

P̃~G!5KP~G!1!F12E
0

G

P~G8!1!dG8GK21

, ~31!

where we have assumed that allK resonances are distribute
according toP(G!1). The validity of this approximation
was verified recently in the framework of the RMT@50#. An
important outcome of our study will be that one can ident
traces of prelocalized states in the latter distribution and c
sequently inP̃(G). This sheds some light on recent expe
mental finding for random lasers which suggests the app
ance of localized modes in diffusive samples@51#.

We start our analysis with the study of resonance wi
distribution P~G! for G,Gcl . The small resonancesG,D
can be associated with the existence of prelocalized state
the closed system which were discussed in the prece
section. They consist of a short-scale bump~where most of
the norm is concentrated! and they decay rapidly in a powe
law fashion from the center of localization@20,25#. One then
expects that states of this type with localization centers at
bulk of the sample are affected very weakly by the open
of the system at the boundaries. In first-order perturba
theory, considering the opening as a small perturbation
obtain

G

2
5^CuW†WuC&5 (

nPboundary
uC~n!u2;LuC~L !u2,

~32!

whereuC(L)u2 is the wave-function intensity of a preloca
ized state at the boundary. At the same time the distribu
of u51/ALC(L) for large values of the argument is found
be of log-normal type@20#:

P~u!;exp@2p2D ln2~u2!#. ~33!
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Using this together with Eq.~32! we obtain

P~1/G!;exp@2p2D ln2~1/G!#. ~34!

We would like to stress that, based on the results of
preceding section, the expression forP~u! must be corrected
by including the TRS factorb in the exponent. Taking all the
above into account we end up with the expression given
Eq. ~29!.

The numerical data reported in Fig. 8 support the valid
of the above considerations. However, we would like to m
tion that the perturbative argument is valid only for the ca
of very small resonances, i.e.,G,D, whereas our numerica
data indicate that one can extend the log-normal behavio
P~G! up to resonances withD,G,Gcl .

Next we turn to the analysis ofP~G! for G*Gcl . In Fig.
9~a! we report our numerical results forP~G! with preserved
~broken! TRS for two representative values ofD. An inverse
power lawP(G);G21.5 is evident in accordance with Eq
~29!. @The behavior of the extreme largeG tails of P~G! is
essentially determined by the coupling to the leads which
model dependent. Their relative number is proportional
M /L2;L21 and therefore they are statistically insignifican#
From the figure it is clear that this part of the distribution
independent of the symmetry class, in contrast to the sm
resonance distribution discussed above.

The following argument provides some understanding
the behavior ofP~G! for G*Gcl . First we need to recall tha

FIG. 8. ~a! The distribution of resonance widths@plotted as
P~1/G! vs 1/G# for G,Gcl for two representative values ofD. The
system size in all cases isL580. Filled symbols correspond to
broken TRS. The solid lines are the best fit of Eq.~29! for b51~2!
to the numerical data.~b! CoefficientsCb vs D. The solid lines are
the best fits toCb5AbD1Bb for b51(2). Theratio R5A2 /A1

51.9560.03
5-8
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FIG. 9. ~a! The resonance width distribution
P~G! for preserved TRS andD520.3 ~s! and
D533.5 ~L!. The corresponding filled symbol
representP~G! for broken TRS and the same va
ues ofD. The dashed~solid! vertical line marks
the classical decay rateGcl for D520.3 (D
533.5). ~b! The Pint(G) for a sample with nine
leads~lower curve!. For comparison we plot also
the Pint(G) for the same sample but when w
open the system from the boundaries. The das
lines correspond to the theoretical predictio
~36! and ~37!.
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the inverse ofG represents the quantum lifetime of a partic
in the corresponding resonant state escaping into the le
Moreover we assume that the particles are uniformly dist
uted inside the sample and diffuse until they reach
boundaries, where they are absorbed. Then we can asso
the corresponding lifetimes with the timetR;1/GR;R2/D a
particle needs to reach the boundaries, when starting a
tanceR away. This classical picture can be justified for
states withG*Gcl;D/L2. The relative number of states th
require a timet,tR in order to reach the boundaries~or
equivalently the number of states withG.GR) is

Pint~GR!5E
GR

`

P~G!dG;
S~ tR!

L2
, ~35!

whereS(tR) is the area populated by all particles with life
times t,tR . In the case of open boundaries we get

Pint~GR!;
L22~L22R!2

L2
;AGcl

GR
2

Gcl

GR
. ~36!

For GR.Gcl the first term in the above equation is the dom
nant one and thus Eq.~29! follows.

Here it is interesting to point out that a different way
opening the system might lead to a different power-law
havior for P(G). Such a situation can be realized if inste
of opening the system at the boundaries we introduce ‘‘o
site’’ absorber~or one ‘‘lead’’! somewhere in the sample. I
such a case we have

Pint~GR!;
S~ tR!

L2
5

R2

L2
5

DtR

L2
;

Gcl

GR
. ~37!
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The above result is valid for any numberM of ‘‘leads’’ such
that the ratioM /L2 scales as 1/L2. In Fig. 9~b! we report the
integrated resonance width distributionPint(G) for the case
with nine ‘‘leads’’ attached somewhere to the 2D sample.

A straightforward generalization of our arguments for 3
systems in the diffusive regime gives

Pint~GR!;AGcl

GR
22

Gcl

GR
1

4

3 S Gcl

GR
D 3/2

, ~38!

which for GR.Gcl leads to the same universal expression
in Eq. ~29!. Similarly, the analog of Eq.~37! in 3D is

Pint~GR!;S Gcl

GR
D 3/2

. ~39!

It is interesting to compare the above prediction~29! with
the results of the random matrix theory. In the general ca
Fyodorov and Sommers@52# proved that the distribution o
scaled resonance widthsg5G/D for the unitary random ma-
trix ensemble is given by

P~g!5
~21!M

G~M !
gM21

dM

dgM S e2gpq
sinh~gp!

~gp! D , ~40!

whereM is the number of open channels and the parametq
controls the degree of coupling with the channels (q51 for
perfect coupling!. Our numerical data from the 2D KR
model in the ballistic regime, reported in Fig. 10, are
excellent agreement with the theoretical prediction~40!.

In the limit of M@1, which is relevant for the compari
son with Eq.~29!, Eq. ~40! reduces to the following expres
sion @52#:
5-9
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FIG. 10. Distributions of the resonance width
in the ballistic regime for two-dimensional kicke
rotor ~s! compared with the RMT predictions
~dashed lines!.
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P~g!5H M

2pg2 for
M

p~q11!
,g,

M

p~q21!

0 otherwise.

~41!

One can see two essential distinctions between this result
Eq. ~29!. First, the power lawP(G);1/G2 is not the same as
the power law predicted by Eq.~29! for large resonance
P(G);1/G3/2. Since this difference appears in the ‘‘class
cal’’ part of the distribution, it can be explained as a diffe
ence in the classical dynamics of a particle inside the syst
ballistic ~RMT! versus diffusive motion. Indeed, taking int
account that for ballistic systemR;vt andGcl;v/L, where
v is the velocity of the particle, one immediately finds fro
Eq. ~36! that Pint(GR);Gcl /GR for GR.Gcl , in agreement
with the RMT predictionP(G);1/G2. Second, according to
Eq. ~41! there is a gap in the distribution of the resonan
widths: there are no resonances with widths smaller t
M /p(g11). The existence of the gap can be understood
one relates the small resonances to the coupling of the w
functions to the leads. Since the wave functions in the R
are extended, the probability to find a wave function, wh
is weakly coupled to allM channels, goes to zero when th
number of channels becomes very largeM@1. In the diffu-
sive regime, in contrast, there are prelocalized states, w
are weakly coupled to the leads. Due to their existence
distribution of the small resonance widths has a nontriv
behavior described by Eq.~29!.

B. Wigner delay times distribution

We turn now to the analysis of Wigner delay times a
calculate their probability distribution. It can be shown th
this distribution is related to the distribution of reflectio
coefficientsR in the present of weak absorption. Absorptio
is one of the main ingredients in actual experimental sit
tions and its theoretical understanding is of great importan
Unfortunately a comprehensive treatment of absorption
still lacking. There are only very few reported analytical r
sults for the distribution of the reflection coefficientP(R) in
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the presence of absorption and all of them are either wit
the regime of applicability of RMT@41–44,53# or applied for
quasi-1D geometry@53,54#. Here we will deriveP(R) in the
diffusive regime in two dimensions and in the weak abso
tion limit. In this limit it was shown@42,44# that the follow-
ing relation between the proper Wigner delay times and
flection coefficients holds:

Rq512tq /ta , ~42!

where tq are the proper delay times~eigenvalues of the
Wigner-Smith operator! and 1/ta is the absorption rate. Thu
the knowledge ofP(R) reduces to the calculation of th
distribution of proper Wigner delay timesP(tq) @42#.

Below we make the standard assumption that the resul
distribution generated over different energies is equival
with the one generated over different disorder realizatio
Our starting point is the well-known relation

t~v!5 (
n51

L2

Gn

~v2vn!21Gn
2/4

, ~43!

which connects the Wigner delay times and the poles of thS
matrix.

Let us start with the far tails. It is evident that large tim
t(v);Gn

21 corresponds to the cases whenv.vn and Gn

!1. In the neighborhood of these points,t(v) can be ap-
proximated by a single Lorentzian~43!. Sampling the
quasienergiesv with stepDv!Gmin we calculate the num-
ber of points for which the time delay is larger than som
fixed valuet ~see Fig. 11!. Assuming that the contribution o
each Lorentzian is proportional to its width one can estim
this number as(Gn,1/tGn /DE. For the integrated distribu
tion of delay times in the limitDv→0 we obtain

Pint~t!;E1/t

dGP~G!G ~44!
5-10
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SIGNATURES OF CLASSICAL DIFFUSION IN . . . PHYSICAL REVIEW E68, 066215 ~2003!
and by substituting the small resonance width asympt
given by Eq.~29! we come out with the log-normal law o
Eq. ~30! in agreement with our numerical findings report
in Fig. 12.

Now we estimate the behavior ofP~t! for t&Gcl
21 . In this

regime many short-living resonances contribute to the s
~43!. We may therefore considert as a sum of many inde
pendent positive random variables each of the typetn

5Gnxn , wherexn5dvn
22 . Assuming further thatdvn are

uniformly distributed random numbers we find that the d
tribution P(xn) has the asymptotic power-law behavi
1/xn

3/2. As a next step we find that the distributionP(tn)
decays asymptotically as 1/tn

3/2 where we use thatP(Gn)
;1/Gn

3/2. Then the correspondingP~t! is known to be a
stable asymmetric Levy distributionLm,1(t) of index m
51/2 @55# which has the form given in Eq.~30! at the origin.
We point out here that the asymptotic behaviorP(t)
;1/t3/2 emerges also for chaotic/ballistic systems where
assumption of uniformly distributeddvn is the only crucial

FIG. 11. Schematic plot for the Wigner delay time as a funct
of quasienergy according to Eq.~43!.
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ingredient~see, for example, Ref.@52#!.
Sincet5( i 51

M tq , we expect the behavior of the distribu
tion of proper delay timesP(tq) to be similar toP~t! for
large values of the arguments~for t@1 we havet;tq

max).
Moreover, from the numerical point of viewP(tq) can be
studied in a better way because a larger set of data ca
generated easily. Our numerical findings forP(tq) are re-
ported in Fig. 12 and are in nice agreement with Eq.~30!,
even for moderate values oftq . We stress here that th
dashed lines in Fig. 12 have slopes equal toCb taken from
the corresponding log-normal tails ofP~G!.

Finally we would like to compare our result~30! with the
results known from the random matrix theory. Although t
distributions of the proper delay times@56,57# and partial
delay times~defined as a derivative of the partial phaseu i of
the S matrix with respect to energy! @52# have been calcu-
lated recently, there is no explicit analytical formula for th
distribution of the Wigner delay times for number of ope
channelsM.2 @58#. Nevertheless using consideration sim
lar to one presented above~see the discussion fort&Gcl

21)
one can argue@52# that the part ofP(t) for t&Gcl

21 is the
same in the RMT as stated in Eq.~30!. However, the distri-
bution of the large delay times in the RMT is expected
have a power-law behaviorP(t);1/t21bM /2 with M being
the number of open channels. This is in contrast with a l
normal tail stated in Eq.~30!.

VII. CONCLUSIONS

This paper is devoted to the investigation of chaotic a
disordered systems characterized by the classical diffus
Section V deals with study of the closed system. Specifica
we perform a detailed numerical analysis of the eigenfu
tion intensitiesP(y) of the two-dimensional kicked rotor on
a torus. Our results indicated that the distributionP(y) of
generic quantumdynamicalsystems with diffusive classica
limit is affected by the existence ofprelocalizedstates. The
deviations from RMT are well described by field theoretic
n
FIG. 12. The proper delay times distributio
P(tq) for D520.3 ~s! and D529.8 ~h!. The
~d! correspond toD520.3 but now with broken
TRS. The dashed lines have slopes equal toCb

extracted from the correspondingP~G! ~see Fig.
8!. In the inset we reportP(tq) for moderate val-
ues oftq in a double logarithmic scale.
5-11
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KOTTOS, OSSIPOV, AND GEISEL PHYSICAL REVIEW E68, 066215 ~2003!
methods developed for disordered systems. In particular
find that the dependence of the tails ofPb(y) on TRS is
described correctly by NLSM.

Section VI deals with the study of the open system. Af
introducing a scattering formalism for the KR model we i
vestigated the distribution of the resonance widthsP~G! and
Wigner delay timesP~t!. We obtain the forms of these dis
tributions~log normal for larget and smallG, and power law
in the opposite case! for different symmetry classes an
show that they are determined by the underlying diffus
classical dynamics and by the existence of the prelocal
states. Our theoretical arguments are supported by exten
numerical calculations.

Although the arguments, we used to explain the beha
of P~G! and P~t!, can be easily generalized to the thre
dimensional case, the numerical test of these predictions
not been still performed. Moreover the study of thre
dimensional case would allow us to investigate these dis
bution at the critical point of the metal-insulator transitio
The first attempt to attack this problem was done in R
@59#, but a detailed understanding is still required.
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APPENDIX A: THE MEAN FREE PATH

Let us consider the evolution operator of the tw
dimensional kicked rotor introduced in Eq.~9! ~to simplify
the calculations we putT51)
06621
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U5e2 iH 0(L1 ,L2)/2e2 iV(u1 ,u2)e2 iH 0(L1 ,L2)/2. ~A1!

The set of the orthogonal eigenfunctions of the free Ham
tonianH0 is given by plane waves in the angle representat

f (n1 ,n2)~u1 ,u2!5
1

2p
ei (n1u11n2u2). ~A2!

They are normalized in such a way that

E
0

2pE
0

2p

du1du2uf (n1 ,n2)~u1 ,u2!u251. ~A3!

Let us denote byU (k1 ,k2),(n1 ,n2) the matrix elements of the
evolution operator in this basis

U (k1 ,k2),(n1 ,n2)5^f (k1 ,k2)uUuf (n1 ,n2)&. ~A4!

According to the definition of the evolution operator th
modulus square of its elements have the meaning of
probability to change the initial momentum (n1 ,n2) to the
final momentum (k1 ,k2) in one kick. Therefore one can de
fine themean free path in momentum space@8# by

l M
2 5(

r 1
(
r 2

~r 1
21r 2

2!uU (0,0),(r 1 ,r 2)u2. ~A5!

Here we used the fact thatuU (k11m1 ,k21m2),(n11m1 ,n21m2)u2

5uU (k1 ,k2),(n1 ,n2)u2, so without loss of generality one ca

take the initial momentum equal to (0,0). In order to calc
late the right-hand side of Eq.~A5! we first give an explicit
expression to the matrix elementsU (k1 ,k2),(n1 ,n2) :
U (k1 ,k2),(n1 ,n2)5 (
i , j ,s,t

^f (k1 ,k2)ue2 iH 0(L1 ,L2)/2uf ( i , j )&^f ( i , j )ue2 iV(u1 ,u2)uf (s,t)&^f (s,t)ue2 iH 0(L1 ,L2)/2uf (n1 ,n2)&

5e2 i [H0(k1 ,k2)1H0(n1 ,n2)]/2^f (k1 ,k2)ue2 iV(u1 ,u2)uf (n1 ,n2)&e
2 i [H0(k1 ,k2)1H0(n1 ,n2)]/2

1

4p2

3E
0

2pE
0

2p

du1du2e2 iV(u1 ,u2)ei (n12k1)u11 i (n22k2)u2. ~A6!

Taking (k1 ,k2)5(0,0) and (n1 ,n2)5(r 1 ,r 2) we obtain

U (0,0),(r 1 ,r 2)5e2 i [H0(0,0)1H0(r 1 ,r 2)]/2
1

4p2E0

2pE
0

2p

du1du2e2 iV(u1 ,u2)eir 1u1eir 2u2. ~A7!

The substitution of this expression into Eq.~A5! yields

l M
2 5(

r 1
(
r 2

~r 1
21r 2

2!
1

~4p2!2E0

2pE
0

2pE
0

2pE
0

2p

du1du2dũ1dũ2e2 i (V(u1 ,u2)2V( ũ1 ,ũ2))eir 1(u12 ũ1)eir 2(u22 ũ2). ~A8!

Taking into account that
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r 1
2eir 1(u12u1̃1)5

]2

]u1]ũ1

eir 1(u12u1̃1) ~A9!

and that the same is valid forr 2 the partial integration of the Eq.~A8! gives

l M
2 5(

r 1
(
r 2

1

~4p2!2E0

2pE
0

2pE
0

2pE
0

2p

du1du2dũ1dũ2S ]2

]u1]ũ1

1
]2

]u2]ũ2
D e2 i [V(u1 ,u2)2V( ũ1 ,ũ2)]eir 1(u12 ũ1)eir 2(u22 ũ2).

~A10!

The summation of the exponents overr 1 and r 2 yields twod functions:

l M
2 5

1

4p2E0

2pE
0

2pE
0

2pE
0

2p

du1du2dũ1dũ2S ]2

]u1]ũ1

1
]2

]u2]ũ2
D e2 i [V(u1 ,u2)2V( ũ1 ,ũ2)]d~u12 ũ1!d~u22 ũ2!

5
1

4p2E0

2pE
0

2pE
0

2pE
0

2p

du1du2dũ1dũ2S ]V

]u1
~u1 ,u2!

]V

]ũ1

~ ũ1 ,ũ2!1
]V

]u2
~u1 ,u2!

]V

]ũ2

~ ũ1 ,ũ2!D
3e2 i [V(u1 ,u2)2V( ũ1 ,ũ2)]d~u12 ũ1!d~u22 ũ2!

5
1

4p2E0

2pE
0

2p

du1du2F S ]V

]u1
~u1 ,u2! D 2

1S ]V

]u2
~u1 ,u2! D 2G . ~A11!
e

.

h

the

the
l

s

The last expression can be written in a compact form

l M
2 5

1

4p2E0

2pE
0

2p

du1du2i¹W V~u1 ,u2!i2. ~A12!

Now we calculate the mean free path in the case wh
the potentialV(u1 ,u2) is given by Eq.~2!:

V~u1 ,u2!5k@cos~u1!cos~u2!cos~a!

1 1
2 sin~2u1!cos~2u2!sin~a!#. ~A13!

Taking the derivative of this expression with respect tou1
andu2 one has

S ]V

]u1
~u1 ,u2! D 2

5k2~sin2 u1 cos2 u2 cos2 a1cos2 2u1

3cos2 2u2 sin2 a22 sinu1 cos 2u1 cosu2

3cos 2u2 cosa sina!,

S ]V

]u2
~u1 ,u2! D 2

5k2~cos2u1 sin2 u2 cos2 a

1sin2 2u1 sin2 2u2 sin2 a

12 cosu1 sin 2u1 sinu2 sin 2u2 cosa sina!

~A14!

The integration overu1 andu2 yields for the mean free pat
06621
re

l M
2 5

1

4p2
k2~p2 cos2 a1p2 sin2 a1p2 cos2 a1p2 sin2 a!

5
k2

2
, ~A15!

which is the same result as the one derived in Ref.@8# for
different potentialV(u1 ,u2).

APPENDIX B: DIFFUSION COEFFICIENT IN THE
RANDOM-PHASE APPROXIMATION

Here we give for completeness of the presentation
derivation of the diffusion coefficient for our model~1!, ~2!
in the random-phase approximation. We start by writing
classical maps Eq.~3! for the general form of the potentia
V(u1 ,u2):

u1~n11!5u1~n!1t1TL1~n! mod 2p,

u2~n11!5u2~n!1t2TL2~n! mod 2p,

L1~n11!5L1~n!2
]V

]u1
@u1~n11!,u2~n11!#,

L2~n11!5L2~n!2
]V

]u2
@u1~n11!,u2~n11!#

2sin@2u1~n11!#sin@2u2~n11!#sin~a!.

~B1!

The diffusion coefficient in momentum space is defined a
5-13
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D5 lim
t→`

^L 1
2~ t !1L 2

2~ t !&
t

. ~B2!

The average in this expression is taken over an ensemb
trajectories, with different initial conditions. Using the cla
sical maps forL1 andL2 we obtain

D5 lim
n→`

1

nT F(
i 51

n K S ]V

]u1
@u1~ i !,u2~ i !# D 2

1S ]V

]u2
@u1~ i !,u2~ i !# D 2L

1(
i 51

n

(
j 51,j Þ i

n K ]V

]u1
@u1~ i !,u2~ i !#

]V

]u1
@u1~ j !,u2~ j !#

1
]V

]u2
@u1~ i !,u2~ i !#

]V

]u2
@u1~ j !,u2~ j !#L G . ~B3!

For the large values of the kicking strengthk, in a good
approximation one can consider the phasesu1( i ) andu2( i )
as random variables which are uncorrelated for differeni
and distributed uniformly in the interval@0,2p#. Using this
random-phase approximation it is easy to show that only
diagonal terms in Eq.~B3! give nonzero contribution in the
limit n→`. Taking into account that the distribution of th
phases is uniform one can convert the sum for the diago
terms into an integral. Finally we obtain

D5
1

4p2T
E

0

2pE
0

2p

du1du2F S ]V

]u1
~u1 ,u2! D 2

1S ]V

]u2
~u1 ,u2! D 2G . ~B4!

Then the formula for the diffusion coefficient measured
number of kicksDk5TD is given by

Dk5
1

4p2E0

2pE
0

2p

du1du2i¹W V~u1 ,u2!i2, ~B5!

which has exactly the same form as one appearing in
~A12!. Thus we obtain that in the random-phase approxim
tion the following relation between the mean free path a
the diffusion coefficient is valid:

Dk5 l M
2 5

k2

2
. ~B6!

Therefore changing the kicking strength we can easy tune
diffusion constant or Thouless conductance~for disordered
systems!. This allows us to investigate various regimes: b
listic, diffusive, and localized.
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APPENDIX C: UNITARITY OF THE S MATRIX

Let us rewrite the expression forS matrix ~16! in a more
symmetric way. To this end we use a series expansion
inverse operator in Eq.~16!:

@U2e2 iv2W†WU#21

5F ~U2e2 iv!S I 2
1

U2e2 iv
W†WUD G21

5F I 2
1

U2e2 iv
W†WUG21

1

U2e2 iv

5 (
k>0

S 1

U2e2 iv
W†WUD k

1

U2e2 iv
. ~C1!

Substituting this expansion in Eq.~16! we obtain

S5 (
k>0

WUS 1

U2e2 iv
W†WUD k

1

U2e2 iv
W†

5 (
k>0

S WU
1

U2e2 iv
W†D k11

5

WU
1

U2e2 iv
W†

I 2WU
1

U2e2 iv
W†

5

W
U

U2e2 iv
W†

WS I 2
U

U2e2 ivD W†

52

W
U

U2e2 iv
W†

W
e2 iv

U2e2 iv
W†

. ~C2!

Now using the unitarity of the evolution operatorU we can
calculate the Hermitian conjugateS matrix:

S†52

W
U21

U212eiv
W†

W
eiv

U212eiv
W†

52

W
e2 iv

e2 iv2U
W†

W
U

e2 iv2U
W†

52

W
e2 iv

U2e2 iv
W†

W
U

U2e2 iv
W†

5S21. ~C3!

Thus the unitarity of theS matrix is proven.
5-14



e

-

,’’
i-

v.

tt.

.

. A

re
,

ev.

ev.

ker,

ev.

tt.

. E

SIGNATURES OF CLASSICAL DIFFUSION IN . . . PHYSICAL REVIEW E68, 066215 ~2003!
@1# E. Wigner, Ann. Math.62, 548 ~1955!; 65, 203 ~1957!.
@2# K.B. Efetov, Supersymmetry in Disorder and Chaos~Cam-

bridge University Press, New York, 1997!.
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